BIOGRAFIE

Sanna Clementsson

Sanna Clementsson è forse la stella più brillante del firmamento bridgistico svedese e certamente, tra i tanti astri che brillano in quel fantastico spicchio di cielo, è la più giovane.

Nata il 19
luglio del
2001 a
Södra
Sandby,
una
cittadina
non
lontana da
Lund,
Sanna,
che ha

una sorella di tre anni più giovane che, però, non gioca, ha studiato presso le scuole *Killebäck* e *Katedral* della sua città e oggi vive nella capitale svedese dove frequenta la *Karolinska* che è l'Università di medicina di Stoccolma.

Fidanzata con il giovane campione *Fredrik Nystrom*, si diletta a suonare il violino ed è stata una colonna delle squadre giovanili svedesi, con cui ha vinto il bronzo ai *Campionati Europei Under 16* del 2015 per poi arrivare all'oro in quelli *Under 18* del 2017.

Nel 2017 ha vinto gli *Elite Mind Game* nella nazionale femminile maggiore e nel 2019 ha trionfato nel primo *Campionato Europeo a Squadre Miste* essendo stata la più giovane giocatrice di sempre a riuscirci e, nello stesso anno, di nuovo più giovane bridgista di ogni tempo, ha vinto la prestigiosa *Venice Cup*, il campionato del mondo femminile a squadre per nazioni, titolo cha ha poi bissato nel 2022.

Sanna è anche la più giovane giocatrice di sempre ad aver conquistato il titolo di *Open World Master* che ha potuto sommare a quello di *Women Word Grand Master* con cui occupa la tredicesima posizione tra le giocatrici più forti del mondo.

È quasi incredibile, eppure nel maggio di quest'anno, quando ancora non ha compiuto i 21 anni, la straordinaria campionessa svedese ha già guadagnato:

140 Youth Master Point

1561 Women's Master Point

104 Open Master Points

92 Mixed Master Point

1 Mixed Placing Point

10 Women's Placing Point

1/2 Open Placing Point

Cosa altro dobbiamo mai aspettarci?
Grattis Sanna!

ANEDDOTI

George Bernard Show

Un giocatore che era uso lamentarsi che giocare a bridge era diventato quasi impossibile a causa della scarsa educazione dei frequentatori, una sera lo fece al tavolo di George Bernard Shaw

raccontando che la sera prima il partner di turno gli aveva tirato le carte in faccia. Shaw serafico gli rispose: perdonalo e pensa quanto sei fortunato a non essere un giocatore di bowling!

Benjamin Jay Becker

Procuratore legale, articolista ed insegnante di bridge, è stato uno dei arandi giocatori di americani tutti i tempi ed è stato il 6° dei Life Master dell'*American* Bridge Contract League da

quando nel 1935 venne istituita la categoria.

Di lui si diceva che nei giorni buoni non si poteva batterlo, si poteva solo legarlo.

TECNICA

I trucchetti del mestierante

Siete in duplicato e siete impegnati nella manche a SA. Sud inizia con il 5 e la vostra dotazione nel colore è ragguardevole:

♦ JT2	♠ AQ6
♥ Q97	♥ 653
♦ KQJ765	♦ T2
♣ 3	♣ AK542

Chiamate il J♠ dal morto e Nord segue con il 7♠, voi cosa pensate di fare?

Dovete cedere la presa all'Asso di quadri, quando gli avversari lo riscuoteranno torneranno a cuori, e voi sarete nei guai.

Per aumentare le probabilità che non lo facciano, superate il Fante con la Dama per date l'impressione di avere AQ secchi, poi muovete quadri.

Se, chi vince la presa, rimuove picche...

Del tutto analoga è la situazione qualora aveste nel colore di attacco, il doppio scartinato al morto e AKJ secchi in mano.

♦ 82	♠ AKJ
♥ Q97	♥ 653
♦ KQJ765	♦ T42
♣ 32	♣ AK54

Non state a pensarci e fate la prima presa con il Re.

Ancora:

♦ J93	♠ KT6
♥ Q9	♥ 653
♦ KQJ765	♦ T42
♣ 32	♣ AK54

Sud parte con il 7♠ per il Fante del morto e l'8♠ di Nord.

Scialacquate il Dieci e può darsi che se l'Asso di quadri lo ha Ovest, tirerà pure quello di picche nella speranza di veder crollare il Re secco.

CRONACA

Un passo avanti della IA

Poco più di un mese fa "The Guardian" usciva titolando "L'intelligenza artificiale batte otto campioni del mondo di bridge".

Più avanti affermava che si trattava di una pietra miliare sulla strada evolutiva dell'IA, perché il bridge, basandosi su informazioni incomplete, era l'unico gioco che le macchine non riuscivano a battere.

La start up francese "Nukkal" ha annunciato la notizia della vittoria del suo nuovo s/w di IA il 26 marzo del 2022 al termine di un torneo disputato a Parigi nei due giorni precedenti.

Vedremo che questa vittoria va in parte ridimensionata, intanto, però, facciamo un po' di storia sull'IA e le sue sfide con i giochi di strategia.

Nel 1966 "Deep Blue" sviluppato da IBM sfida il campione del mondo di scacchi Garry Gasparov ma perde la partita per 2 a 4.

La sfida si svolge a Philadelphia nei giorni dal 10 al 17 febbraio e segna una svolta epocale nella storia dell'IA ludica perché è la prima che una macchina, pur perdendo la sfida, vince due partite di scacchi contro un pluricampione del mondo.

L'anno successivo la sfida si ripete a New York City dal 3 all'11 maggio e stavolta *Deep Blue* prevale per 3½ a 2½ e questa è veramente una pietra miliare nella storia dell'IA che sancisce la supremazie delle macchine sull'uomo nei giochi a informazione completa.

Si tenga conto che Gasparov ha vinto 6 volte il campionato del mondo per i colori russi prima del 1991 e altre 5, con i colori della Croazia, dopo tale data.

Gasparov non è soltanto uno dei più grandi scacchisti di sempre, è anche un attivista politico con idee progressiste. Eccolo in un'intervista del 2022 a RAI3 che ha già fatto storia per il coraggio delle sue dichiarazioni:

"Le proteste del popolo russo contro la guerra sono il sintomo che Putin si sta indebolendo, la guerra sta andando nella direzione sbagliata per lui.

Per la Russia l'unico modo di uscire dall'isolamento sarà rimuovere Putin dal potere".

Putin ha distrutto qualsiasi opposizione organizzata in Russia.

Oggi vediamo migliaia di persone che vengono arrestate semplicemente per aver contestato la guerra.

Molte di loro potrebbero finire in galera per anni.

Ed è fantastico che nonostante il rischio enorme che si corre la gente lo stia facendo comunque.

Putin ha speso molti soldi in armamenti, per l'apparato di sicurezza e per la propaganda, togliendo risorse dalla sanità, dal sistema sociale, da quello abitativo, dall'educazione e le persone non sono stupide".

Ma torniamo al nostro tema di fondo.

Nel 2007 alcuni ricercatori dell'Università di Alberta in Canada mettono a punto un s/w che gioca a Dama senza poter essere battuto!

Nel febbraio del 2011 il programma "Watson" di IBM sconfigge in diretta TV i due campioni del famosissimo quiz televisivo "Jeopardy".

Ken Jennings che aveva ottenuto nel game show la bellezza di 74 vittorie e Brad Rutter che era il partecipante che aveva cumulato la maggior somma di vincite di sempre (3 milioni di USD), devono deporre le armi di fronte a Watson che vince la sfida televisiva e si porta a casa un milione di USD come ricompensa.

La vittoria del s/w IBM inaugura una nuova era nell'informatica in cui le macchine sono sempre più in grado di apprendere e capire ciò che gli umani chiedono loro davvero.

Infatti, Jeopardy costituiva una sfida significativa per l'IA a causa del format a fuoco rapido e degli indizi che spesso si basano su significati sottili, giochi di parole ed enigmi vari. Qualcosa in cui gli umani eccellono e i computer no.

Tra il 9 ed il 15 marzo del 2016, in quel di

Seul, il s/w "AlphaGo" di Google Deep Mind, sfida Leo Sedol, il giocatore di Go che, al momento della sfida, deteneva il punteggio Elo più alto al mondo, e lo batte per 4 a 1.

Al termine della sfida l'associazione coreana *Baduk* ha assegnato ad AlphaGo il grado di "*Go Grand Master*" (il più alto possibile) e lo ha nominato 9º dan onorario.

In tutti questi anni, varie sfide tra i s/w e i bridgisti si erano concluse sempre a favore di questi ultimi tanto, che i bridgisti amano dire che il loro era l'unico gioco che non si era mai piegato alle macchine e gli sviluppatori di s/w hanno organizzato un Campionato del Mondo di Bridge riservato alle loro creazioni definite "Robot".

Da allora, vari tipi di *Robot* trovano ospitalità su tutte le piattaforme di *Bridge On Line* più diffuse al mondo.

E, finalmente, arriviamo all'annuncio di *The Guardian*.

Gli otto campioni del mondo Brad Moss, Thomas Bessis, Sabine Auken, Benedicte Cronier, Mikael Rimstedt, Roy Welland, Anna Gulevich e Nevena Senior, hanno giocato 8 segmenti di 10 smazzate ciascuno, esibendosi sempre nel contratto di 3SA a fronte di una licita sempre uguale:

mentre a difendere era stato chiamato WB5, il miglior robot deterministico gratuito esistente al mondo.

I non si misuravano tra loro, venivano assegnati 10 punti per ogni contratto mantenuto contro WB5, un punto

aggiuntivo per ogni presa in più, mentre, veniva tolto un punto per ogni presa in meno.

La IA di Nukkal, ha gicato tutte e 800 le smazzate, sempre contro WB5, e alla fine ha prevalso sui giocatori umani.

Pur con tutte le limitazioni sopra descritte, si tratta della prima vittoria di un computer nel mondo del bridge e di una svolta nell'evoluzione dell'IA che ha lasciato meravigliati gli stessi campioni che si sono cimentati nell'insolita gara.

L'episodio è ragguardevole per il cambio di paradigma usato nello sviluppo dell'IA di Nukkal.

Infatti, la maggior parte delle IA che hanno battuto gli umani nei giochi di strategia si basavano su quelli che vengono chiamati sistemi a "scatola nera".

Questi sistemi collezionano miliardi di dati in base ai quali scelgono le proprie mosse.

Ma, poiché molti dei "dati" nel bridge sono nascosti all'avversario, Nukkal ha progettato la sua IA, che ha chiamato "Nook", come un sistema a "scatola bianca".

Nook, invece di giocare miliardi e miliardi di smazzate imparando così a prevedere i risultati, ha semplicemente imparato le regole del bridge per poi determinare il suo comportamento nel tempo in base all'esperienza maturata in un grande giocate. numero di partite avvalendosi di alcune piccole reti neurali l'hanno aiutata а imitare comportamento umano.

Questo metodo è molto diverso da quello che è stato fin qui usato negli altri s/w di IA ludica.

Veronique Ventos è la giovane specialista che si sta dedicando a tempo pieno a questo progetto che ha preso il nome di *AlphaBridge*. Laureatasi in Al nel 1997 è stata membro del Large-scale Heterogeneous Data and Knowledge dal 1998 al 2015 e ricercatrice A&O (Machine Learning and Optimization) presso LRI.

Nel 2004 ha conosciuto il bridge ed è

rimasta affascinata dal gioco dedicandosi all'agonismo è scalando la classifica francese fino a raggiungere la 59ª posizione su quasi 50.000 giocatori francesi. Un risultato

notevole, se si pensa che lo ha conseguito mentre lavorava prima al Laboratory of Computer Science e poi al Nukkal.

Da quando Veronique è entrata in collaborazione con il Nukkal si sono svolte tre *Conferenze Scientifiche Internazionali* dedicate al bridge (le prime due in Polonia ed una terza in Croazia) che hanno avuto anche obiettivi non ludici quali ad esempio la cura della malattie oggi inguaribili.

Bridge curativo

Alcune istituzioni prestigiose come l'*Università californiana di Berkeley* e l'*Università Copernico di Torun*, stanno seriamente studiando gli effetti del gioco del bridge sulla prevenzione e, addirittura, sulla cura, di malattie degenerative quali l'Alzhemeir.

Un'altra bridgista di spessore, Samantha Punch è coinvolta in questo tipo di ricerche.

Samantha, che si è laureata presso l'*Università di Leeds* e che fa parte della nazionale scozzese di bridge, è la promotrice del "*Bridge: a Mind Sport for All*" una ricerca che coinvolge circa 300 organizzazioni bridgistiche e che ha lo scopo di propagandare il bridge tra gli anziani, evitando l'isolamento sociale e cercando di costruire la riserva cognitiva

necessaria per evitare, o se non altro, per ritardare l'insorgenza della demenza.

Un importante ricerca è stata fatta presso l'*Alzheimer Center di Varsavia* dove diversi pazienti sono stati accompagnati giornalmente al *Centro* dalle loro famiglie. Alcuni di questi pazienti avevano tre ore di lezioni di bridge a settimana.

Inizialmente, non riuscivano a contare fino a dieci e nemmeno a tenere le carte disposte correttamente in mano, nondimeno, dopo sei mesi, per loro tutto questo non era più un problema tanto che hanno iniziato a giocare un bridge semplificato privo di licita, facendo prese e contando fino a 13 e 52.

Questa è stata una sorpresa enorme, molto piacevole, per tutti gli esperti di bridge e, soprattutto, per lo staff dell'*Alzheimer's Center*.

La ricerca medica faceva praticare ai suoi pazienti anche altri tipi di terapia come, ad esempio, il ballo e la dog therapy e, nel loro ambito, è stato creato un *gruppo di controllo* che praticava tutte le altre terapie ma non seguiva le lezioni di bridge.

Dopo un anno, la perdita di capacità cognitive nel gruppo bridge era più di due volte inferiore a quella del gruppo di controllo!

A fronte di questi incoraggianti risultati, la fondazione "Bridge to the people", che in collaborazione con la "Medical University di Gdansk" ha avviato una ricerca sugli

effetti del gioco del bridge sul sistema immunitario.

Bridgisti famosi

L'ex Presidente argentino Mauricio Macrì ha fatto parte della squadra nazionale seniores che, avendo vinto il Campionato Zonale Sud Americano, ha acquisito il diritto a partecipare alla Bermuda Bowl di Salsomaggiore.

Bridge euristico

Sembra che gli slam non siano rari come generalmente si crede.

Un analisi a doppio morto condotta da Matthew Kidd su oltre 700.000 smazzate casuali ha portato a rivelare che un incredibile 13,6% delle mani contiene uno slam realizzabile.

Questo significa che in quasi il 7% delle smazzate avete la possibilità di realizzare uno slam sulla vostra linea.

Molto più raro è il caso in cui uno slam è alla portata di entrambe le linee (circa una volta ogni 10.000 smazzate).

Detto in altro modo, in una sessione di 30 board ci sono mediamente a disposizione quasi 2 slam per ogni linea!

Senza contare che ve ne sono altri infattibili che una difesa approssimativa potrebbe regalare.

La distribuzione di Poisson, un classico della teoria delle probabilità, applicata alla ricerca in esame, ha mostrato che in una sessione di 27 board, ogni squadra non ha la possibilità di realizzare nessuno slam solo il 16% delle volte (circa in una sessione su sei), mentre ne può realizzare uno il 29% delle volte e due il 27% delle volte.

Addirittura, nel 16% delle volte gli slam realizzabili saranno tre, mentre ne capiteranno quattro o più il 12% delle volte:

Nessuno slam = 16% Uno slam = 29% Due slam = 27% Tre slam = 16% Quattro o più slam = 12%

La ricerca è stata condotta utilizzando il DSS (Double Solver System), i piccoli slam realizzabili erano 77.000 (11%) e, incredibile a credersi, 21.000 (3%) erano i

grandi slam fattibili.

Uno slam qualsiasi (piccolo o grande) risultava fattibile circa una volta su sette!

Se è pur vero che con il DSS esiste la limitazione che uno slam è considerato fattibile indovinando tutto quello che c'è da indovinare, tenuto conto del meccanismo di attribuzione dei premi, questi sono numeri che dovrebbero spingere i creatori di sistemi a dare più spazio ai contratti di slam rispetto a quelli di manche.

VALUTAZIONE DELLA MANO

Asso terzo in apertura

Sul valore da dare alle carte onori al momento dell'apertura si sono fatte innumerevoli ipotesi e si sono spesi fiumi d'inchiostro, tuttavia, a tutt'oggi nessuno è riuscito a sostituire la semplicissima scala *Milton Work* con la quale, fin dagli albori della storia del bridge, ogni bridgista fa i suoi bravi conteggi al momento dell'apertura.

Da sempre la scala MW è stata criticata da più parti per la sua presunta incapacità di rapportare dovutamente l'effettivo valore dei quattro onori maggiori e per aver completamente trascurato il Dieci, probabilmente l'ideatore l'ha fatto a ragion veduta, in ogni caso, bisogna accettare il fatto che questa scala ha qualcosa di magico che ne impedisce il tramonto.

Sembra quasi che la famosa scala non sia farina del sacco dell'avvocato Milton Work, ma, piuttosto, del mago Merlino, che con un potente sortilegio ne ha assicurato l'intramontabilità.

Come è stranoto, la

scala in questione assegna un valore di 4 punti all'Asso, per poi scendere, di punto in punto, fino al Fante.

Tra gli esperti è opinione comune che il Fante sia sopravalutato e che l'Asso sia sottovalutato, ciononostante, nelle scuole di tutto il mondo si continua ad insegnare la scaletta: 4, 3, 2, 1.

E a dimenticarsi della più piccola delle carte onori: il Dieci.

Dare un valore agli onori usando un procedimento "scientifico" è un problema faticoso e non mi è noto se qualcuno lo abbia mai affrontato e risolto in maniera soddisfacente.

Tuttavia, quando primi di mano, ci si trova a dover valutare le proprie carte per decidere se aprire i giochi e, magari, classificare la propria mano come appartenente alla classe del diritto, o a quella del rovescio, o a quella delle aperture forzanti, sono quasi certo che dover assegnare un intero PO ad un Fante scartinato, provochi ai più una fastidiosa sensazione di precarietà.

In realtà, il vero problema non è tanto dato dal valore di un PO assegnato al Fante, quanto dall'entità reciproca di un valore rispetto a quelli degli altri onori.

Preferireste ricevere una mano con un Asso e dodici cartine, oppure, una con quattro Fanti?

Le due mani valgono entrambe 4 PO, ma la risposta suppongo non debba essere troppo agevole.

Per fare un po' di luce in questa ombrosa questione bridgistica proporrò ai miei lettori, in particolare a quelli più propensi a farsi affascinare dalle questioni numeriche, una serie di articoli che non nasconderanno la presunzione di voler risolvere questa faccenda una volta per tutte.

Siccome da qualche parte bisogna pur cominciare, inizieremo a prendere in esame la figura dell'Asso terzo:

Axx

Supponendo che la figura in esame sia in Nord, si procederà ad interfacciarla con tutte le possibili figure che si potrebbero incontrare in Sud nello stesso colore (dal vuoto e fino alle restanti 10 carte) e per ognuna di esse, verrà calcolato il numero delle *prese medie* (PM) conseguibili in base alle leggi statistiche ipotizzando di

eseguire, ogni volta, la miglior manovra capace di massimizzare tale numero.

Il dato verrà calcolato ipotizzando di poter disporre di tutti i rientri necessari per muovere al meglio ognuna delle figure NS che si andranno a configurare e, per quanto riguarda il gioco a colore, prescindendo dagli eventuali tagli che si potrebbero subire prima di aver eliminato gli atout.

Fatto ciò, si applicherà lo stesso identico procedimento alla stessa figura sostituendo l'Asso con una cartina:

XXX

Infine, per mera differenza, si calcolerà il valore aggiunto apportato dall'Asso (ΔPM) in termini di PM conseguibili.

Ponderando questo dato per la probabilità (p₁) che si verifichi ogni possibile configurazione NS, si otterrà il valore aggiunto parziale (V_p) apportato dall'Asso rispetto a quello della figura simile che, però, ne risulta priva.

La sommatoria di tutti i singoli valori così ottenuti, fornirà il V_p dell'Asso terzo misurato in termini di PM.

Infine, ponderando questo dato per la probabilità (p₂) di verificarsi di ognuna delle lunghezze del fit considerato di volta in volta, si otterranno dei valori la cui somma fornirà, finalmente, il valore aggiunto dell'Asso terzo per quella lunghezza di fit.

La somma di questi ultimi valori fornirà, infine, il valore aggiunto (Va) apportato dall'Asso terzo.

Il procedimento è complesso da spiegare ma, seguendo i singoli passi, ci si potrà rendere facilmente conto della sua razionalità.

Certo, si tratterà pur sempre di *valutazioni medie*, tuttavia, al fine di valutare la bontà delle proprie 13 carte al momento dell'apertura, non sarà facile riuscire a fare meglio di così.

Il fatto che le assunzioni per poter operare la miglior manovra vengono applicate allo stesso identico modo per le coppie di figure confrontate, tende a rendere ancor più attendibile la valutazione.

Siete ancora qui?

Se sì, cominciate a considerare il caso più semplice tra tutti: quello che si verifica quando il proprio compagno ha un vuoto in coincidenza del vostro Asso terzo.

È il caso più semplice perché il vuoto, chiaramente, si può configurare in un modo soltanto.

In questo caso, il valore aggiunto dell'Asso terzo in termini di prese medie (ΔΡΜ) sarà pari ad una presa tonda:

XXX	Axx	
-	-	
PM = 0	PM = 1	
$\Delta PM = 1$		

Infatti, mentre con la figura della linea di di confronto di sinistra (a sfondo giallo) non si possono ottenere prese, con quella di destra (a sfondo verde), se ne ottiene una tonda.

Considerato che il vuoto in corrispondenza dell'Asso terzo lo troveremo con una probabilità (p₂) pari allo 0,84%, il valore aggiunto dell'Asso terzo (V_a) ponderato con la probabilità che questa specifica configurazione si possa presentare sarà dato da:

$$V_a = \Delta PM \times p_2$$

$$V_a = 1 \times 0,0084 = 0,0084$$

Nello schema seguente sono racchiusi i dati usati nel calcolo del V_a di questa prima semplicissima figura.

Vuoto				
Sud casi p% ΔPM P ₂ %				P ₂ %
- 1 100 1 0,84				
V _a ⇒ 0,0084				

Quando Sud è singolo le cose si complicano un poco in quanto occorre distinguere se il singolo è costituito da una carta inferiore al Re perché, con il Re il ΔPM apportato dall'Asso sarà chiaramente pari alle 2 prese conseguibili laddove il Re secco a fronte di tre cartine avrebbe procurato zero prese.

La situazione può essere raffigurata nei seguenti due schemi, dove nel primo la "y" indicherà una qualsiasi delle 9 carte diverse sia dalle tre di Sud, che dal Re:

XXX	Axx	
у	X	
PM = 0	PM = 1	
$\Delta PM = 1$		

XXX	Axx	
K	K	
PM = 0	PM = 2	
ΔPM = 2		

Bisogna tener conto che il raffronto del primo schema si ripeterà 9 volte, mentre, il secondo si verificherà una volta soltanto e che, pertanto, il *valore aggiunto parziale* (V_p) di ogni singola combinazione andrà ponderato con la rispettiva probabilità (p₁) del verificarsi dell'evento che lo configura.

Sommando tutti i V_p di riga troveremo il V_p totale della figura (Axx vs singolo) che andrà, a sua volta ponderato con la probabilità p_2 di interfacciare un singolo partendo con l'Asso terzo, al fine di fornire il V_a complessivo della figura considerata.

I dati relativi alle 10 combinazioni in cui Sud si interfaccia con un singolo sono racchiusi nella seguente tabella:

			Singolo		
			Singolo		
Sud	casi	P ₁ %	ΔΡΜ	Vp	P ₂ %
х	9	90	1	0,9	6.20
K	1	10	2	0,2	6,39
	10	100		1,1	0,07

Sommando i valori di V_P calcolati per ognuna delle possibili configurazioni che Sud potrà presentare come appoggio di singolo e ponderando la loro somma con p₂, finalmente, troveremo la componente di V_a apportato dall'Asso terzo che fronteggia un singolo, misurato in prese medie di gioco (indicato in neretto nell'ultima casella di destra della tabella).

Quando Sud sarà doppio, la situazione si fa leggermente più articolata perché tale doubleton potrà essere costituito da due cartine, da un onore con una cartina, o infine, da due onori secchi.

XXX	Axx
XX	XX
PM = 0 PM = 1	
$\Delta PM = 1$	

xxx Axx	
Tx	Tx
PM = 0 PM = 1	
$\Delta PM = 1$	

XXX AXX	
Qx	Qx
PM = 0 PM = 1,5	
ΔPM = 1,5	

xxx Axx	
Jx	Jx
PM = 0 PM = 1	
$\Delta PM = 1$	

XXX	Axx
Kx	Kx
PM = 0.50	PM = 2
$\Delta PM = 1,5$	

XXX	Axx	
QT	QT	
PM = 0	PM = 1,5018	
ΔPM = 1,5018		

XXX	Axx
JT	JT
PM = 0	PM = 1
$\Delta PM = 1$	

XXX	Axx
KT	KT
PM = 0,5	PM = 2
ΔPM = 1 , 5	

XXX	Axxx
QJ	QJ
PM = 0	PM = 2
$\Delta PM = 2$	

XXX	Axx	
KQ	KQ	
PM = 1	PM = 3	
$\Delta PM = 2$		

XXX	Axx
KJ	KJ
PM = 2	PM = 2,0464
$\Delta PM = 2$	

Tutti i dati fin qui incontrati sono quelli necessari per il computo del *valore aggiunto* della figura Asso terzo vs doubleton e sono riepilogati nella tabella della pagina successiva.

	Doppio				
Sud	Casi	P ₁ %	ΔΡΜ	Vp	p ₂ %
xx	15	33,33	1,0000	0,333333	
Tx	6	13,33	1,0000	0,133333	
Qx	6	13,33	1,5000	0,200000	
Jx	6	13,33	1,0000	0,133333	
Kx	6	13,33	1,5000	0,200000	
QT	1	2,22	1,5018	0,033373	19,2
JT	1	2,22	1,0000	0,022222	
KT	1	2,22	1,5000	0,033333	
QJ	1	2,22	2,0000	0,044444	
KQ	1	2,22	2,0000	0,044444	
KJ	1	2,22	2,0000	0,044444	
	45	100,0		1,222262	0,235

In maniera analoga possiamo calcolare, sempre per differenza, il valore aggiunto dell'Asso terzo in termini di prese medie di gioco, quando il dirimpettaio presenta un tripleton di cartine, o una qualsiasi combinazione terza di onori (con o senza cartine di accompagno e includendo tra gli onori anche il Dieci).

XXX	Axx	
XXX	XXX	
PM = 0	PM = 1	
$\Delta PM = 1$		

XXX	Axx	
Txx	Txx	
PM = 0	PM = 1	
$\Delta PM = 1$		
XXX	Axx	
Qxx	Qxx	
PM = 0,24	PM = 1,5048	
ΔPM = 1,2648		

XXX	Axx	
Kxx	Kxx	
PM = 0,5	PM = 2	
$\Delta PM = 1,5$		

XXX	Axx
Jxx	Jxx
PM = 0	PM = 1,017
ΔPM = 1,017	

XXX	Axx	
QTx	QTx	
PM = 0,3773 PM = 1,5581		
ΔPM = 1,1808		

XXX	Axx		
KTx	KTx		
PM = 0,63 PM = 2,017			
ΔPM = 1,387			

XXX	Axx		
KJx	KJx		
PM = 1 PM = 2,5048			
ΔPM = 1,5048			

XXX	Axx		
KQx	KQx		
PM = 1,5 PM = 3			
ΔPM = 1,5			

XXX	Axx	
JTx	JTx	
PM = 0 PM = 1,0896		
$\Delta PM = 1,0896$		

XXX	Axx	
QJx	QJx	
PM = 0.76	PM = 2,5	
$\Delta PM = 1,74$		

XXX	Axx	
KQT	KQT	
PM = 1,5484	PM = 3	
ΛPM = 1.4516		

XXX	Axx	
QJT	QJT	
PM = 1 PM = 2.5		
ΔPM = 1,5		

XXX	Axx	
KJT	KJT	
PM = 1,5 PM = 2,5		
ΔPM = 1		

XXX	Axx	
KQJ	KQJ	
PM = 2 PM = 3		
$\Delta PM = 1$		

Tripleton					
Sud	Casi	P ₁ %	ΔΡΜ	Vp	P ₂ %
XXX	20	16,67	1,0000	0,166667	
Txx	15	12,50	1,0000	0,125000	
Qxx	15	12,50	1,2648	0,158100	
Jxx	15	12,50	1,0170	0,127125	
Axx	15	12,50	1,0170	0,127125	
QTx	6	5,00	1,1808	0,059040	
KTx	6	5,00	1,3870	0,069350	
KJx	6	5,00	1,5048	0,075240	29,6
KQx	6	5,00	1,5000	0,075000	
JTx	6	5,00	1,0896	0,054480	
QJx	6	5,00	1,7400	0,087000	
KQT	1	0,83	1,4516	0,012097	
QJT	1	0,83	1,5000	0,012500	
KJT	1	0,83	1,0000	0,008333	
KQJ	1	0,83	1,0000	0,008333	
	120	100,0		1,16539	0.363

Il procedimento deve essere poi ripetuto anche per tutti i casi in cui Sud presenta fit di lunghezza superiore.

Per il fit quarto, si avrà:

XXX	Axx	
XXXX	XXXX	
PM = 0,3553	PM = 1,3553	
$\Delta PM = 1$		

XXX	Axx
Txxx	Txxx
PM = 0.3553	PM = 1,4037
ΔPM = 1,0484	

XXX	Axx
Qxxx	Qxxx
PM = 0,5953	PM = 1,8674
ΔPM = 1,2721	

XXX	Axx
Kxxx	Kxxx
PM = 0.8674	PM = 2,3553
ΔPM = 1,4879	

XXX	Axx
Jxxx	Jxxx
PM = 0,4475	PM = 1,5646
ΔPM = 1,1171	

XXX	Axx
QTxx	QTxx
PM = 0.8942	PM = 2,222
ΔPM o = 1,3278	

XXX	Axx
KTxx	KTxx
PM = 1,0775	PM = 2,5646
ΔPM = 1,4871	

XXX	Axx
JTxx	JTxx
PM = 0,6776	PM = 1,8876
$\Delta PM = 1,21$	

XXX	Axx
KQxx	KQxx
PM = 1,8553	PM = 3,3553
ΔPM = 1.5	

XXX	Axx
QJxx	QJxx
PM = 1,2842	PM = 2,6898
$\Delta PM = 1,4056$	

XXX	Ax
KJxx	KJxx
PM = 1,3553	PM = 2,8674
ΔPM = 1,5121	

XXX	Axx
KQTx	KQTx
PM = 2,1898	PM = 3.6090
ΔPM = 1,4191	

XXX	Axx
QJTx	QJTx
PM = 1,8311	PM = 3,1776
ΔPM = 1,3465	

XXX	Axx
KJTx	KJTx
PM = 2,1776	PM = 3,5121
ΔPM = 1,3345	

XXX	Axx
KQJx	KQJx
PM = 2,6776	PM = 4
ΔPM = 1,3224	

XXX	Axx	
KQJT	KQJT	
PM = 3	PM = 4	
$\Delta PM = 1$		

Appoggio quarto					
Sud	Casi	P ₁ %	ΔΡΜ	Vp	p _f %
xxxx	15	7,14	1,0000	0,071429	
Txxx	20	9,52	1,0484	0,099848	
Qxxx	20	9,52	1,2721	0,121152	
Kxxx	20	9,52	1,4879	0,141705	
Jxxx	20	9,52	1,1171	0,106390	
QTxx	15	7,14	1,3278	0,094843	
KTxx	15	7,14	1,4871	0,106221	
JTxx	15	7,14	1,2100	0,086429	29,6
KQxx	15	7,14	1,5000	0,107143	29,0
QJxx	15	7,14	1,4056	0,100400	
KJxx	15	7,14	1,5121	0,108007	
KQTx	6	2,86	1,4191	0,040546	
QJTx	6	2,86	1,3465	0,038471	
KJTx	6	2,86	1,3345	0,038129	
KQJx	6	2,86	1,3224	0,037783	
KQJT	1	0,48	1,0000	0,004762	
	210	100,0		1,303257	0,337

Aumentando la lunghezza del fit di Sud, il V_a dell'Asso si ridurrà pian piano a zero, perché la lunghezza assolverà appieno il suo compito vanificando la sua capacità di procurare prese aggiuntive.

XXX	Axx	
XXXXX	XXXXX	
PM = 1,6391 PM = 2,6391		
$\Delta PM = 1$		

XXX	Axx	
Txxxx	Txxxx	
PM = 1,6391	PM = 2,7239	
ΔPM = 1,0848		

XXX	Axx
Qxxxx	Qxxxx
PM = 1,8791	PM = 3,1674
ΔPM = 1,2883	

XXX	Axx	
Kxxxx	Kxxxx	
PM = 2,1674	PM = 3,3691	
ΔPM = 1,2017		

XXX	Axx
Jxxxx	Jxxxx
PM = 1,7239	PM = 2,8678
ΔPM = 1,1439	

XXX	Axx
QTxxx	QTxxx
PM = 2,1474	PM = 3,4922
ΔPM = 1,3448	

XXX	Axx
KTxxx	KTxxx
PM = 2,3452	PM = 3,8678
ΔPM = 1,5226	

XXX	Axx
JTxxx	JTxxx
PM = 1,8	PM = 3,0939
ΔPM = 1,2939	

XXX	Axx	
KQxxx	KQxxx	
PM = 3,1391 PM = 4,6391		
ΔPM = 1,5		

XXX	Axx	
QJxxx	QJxxx	
PM =2,5035 PM = 3,8283		
ΔPM o = 1,3248		

XXX	Axx	
KJxxx	KJxxx	
PM = 2,6391 PM = 4,1674		
ΔPM = 1,5283		

XXX	Axx	
QJTxx	QJTxx	
PM = 2,8565 PM = 4,3		
ΔPM = 1,4435		

XXX	Axx
KQTxx	KQTxx
PM = 3,43	PM = 4,8283
ΔPM = 1,3983	

XXX	Axx
KJTxx	KJTxx
PM = 3,3	PM = 4,4891
ΔPM = 1,1891	

XXX	Axx
KQJxx	KQJxx
PM = 3.8	PM = 4,9609
ΔPM = 1,1609	

XXX	Axx	
KQJTx	KQJTx	
PM = 3,9609 PM = 5,000		
ΔPM = 1,0391		

Appoggio quinto					
Sud	Casi	P1%	ΔΡΜ	Vp	p _f %
xxxxx	6	2,38	1,0000	0,023810	
Txxxx	15	5,95	1,0848	0,064571	
Qxxxx	15	5,95	1,2883	0,076685	
Kxxxx	15	5,95	1,2017	0,071530	
Jxxxx	15	5,95	1,1439	0,068089	
QTxxx	20	7,94	1,3448	0,106730	
KTxxx	20	7,94	1,5226	0,120841	
JTxxx	20	7,94	1,2939	0,102690	13,3
KQxxx	20	7,94	1,5000	0,119048	10,0
QJxxx	20	7,94	1,3248	1,324800	
KJxxx	20	7,94	1,5283	0,121294	
QJTxx	15	5,95	1,4435	0,085923	
KQTxx	15	5,95	1,3983	0,083232	
KJTxx	15	5,95	1,1891	0,070780	
Kqjxx	15	5,95	1,1609	0,069101	
KQJTx	6	2,38	1,0391	0,024740	
	252	100,0		2,533864	0,337

Nel caso dell'appoggio con sei cartine, non è configurabile la figura di raffronto perché le cartine sono in totale 8 (quelle da 2 a 9), in questo, e nei pochi casi simili, è stato scelto di attribuire alla figura lo stesso ΔPM della combinazione più vicina (contrassegnandolo con il colore rosso proprio per evidenziare l'assunzione). L'entità complessiva delle assunzioni che verranno fatte è, in ogni caso, trascurabile.

Seguono, i valori calcolati per un Nord dotato di appoggio sesto.

Non applicabile	Axx	
	XXXXX	
	PM = 0.0957	
$\Delta PM = 1$		

XXX	Axx
Txxxxx	Txxxxx
PM = 3,3113	PM = 4,3113
$\Delta PM = 1$	

XXX	Axx		
Qxxxxx	Qxxxxx		
PM = 3,4835 PM = 4,67			
ΔPM = 1,1865			

XXX	Axx
Kxxxxx	Kxxxxx
PM = 3,8113	PM = 5.3113
$\Delta PM = 1,5$	

XXX	Axx
Jxxxxx	Jxxxx
PM = 3,3591	PM = 4,4835
ΔPM = 1,1244	

XXX	Axx
QTxxxx	QTxxxx
PM = 3,5935	PM = 4,8422
ΔPM = 1,2487	

XXX	Axx
KTxxxx	KTxxxx
PM = 3,8535	PM = 5,4157
ΔPM = 1,5622	

XXX	Axx
JTxxxx	JTxxxx
PM = 3,3591	PM =4,6078
Valore aggiunto = 1,2487	

XXX	Axx
KQxxxx	KQxxxx
PM = 4.89	PM = 5,9043
ΔPM = 1,0143	

XXX	Axx
QJxxxx	QJxxxx
PM = 3,78	PM = 5,1078
ΔPM = 1,3278	

XXX	Axx
KJxxxx	KJxxxx
PM = 4,1078	PM = 5,4835
ΔPM = 1,3757	

XXX	Axx
KQTxxx	KQTxxx
PM = 4,7178	PM = 5,9522
Valore aggiunto = 1,2344	

XXX	Axx
QJTxxx	QJTxxx
PM = 3,9522	PM = 5,4522
ΔPM = 1,5	

XXX	Axx
KJTxxx	KJTxxx
PM = 4,4522	PM = 5,5791
ΔPM = 1,1269	

XXX	Axx
KQJxxx	KQJxxx
PM = 4,9522	PM = 6
ΔPM = 1,0478	

XXX	Axx	
KQJTxx	KQJTxx	
PM = 5	PM = 6	
$\Delta PM = 1$		

Appoggio sesto					
Sud	Casi	P ₁ %	ΔΡΜ	Vp	p _f %
xxxxxx	1	0,48	1,0000	0,004762	
Txxxxx	6	2,86	1,0000	0,028571	
Qxxxxx	6	2,86	1,1856	0,033874	
Kxxxxx	6	2,86	1,5000	0,042857	
Jxxxxx	6	2,86	1,1244	0,032126	
QTxxxx	15	7,14	1,2487	0,089193	
KTxxxx	15	7,14	1,5622	0,111586	
JTxxxx	15	7,14	1,2487	0,089193	4,04
KQxxxx	15	7,14	1,0143	0,072450	.,.
QJxxxx	15	7,14	1,3278	0,094843	
KJxxxx	15	7,14	1,3757	0,098264	
QJTxxx	20	9,52	1,2344	0,117562	
KQTxxx	20	9,52	1,5000	0,142857	
KJTxxx	20	9,52	1,1269	0,107324	
KQJxxx	20	9,52	1,0478	0,099790	
KQJTxx	15	7,14	1,0000	0,071429	
	210	100,0		1.236681	0,05

Nel caso dell'appoggio settimo i casi non configurabili sono più numerosi anche se le valutazioni perdono di significatività andando a modificare tutto al più il terzo decimale.

Non	Axx
applicabile	Txxxxxx
	PM = 5
$\Delta PM = 1,26$	

Non applicabile	Axx
	Qxxxxxx
	PM = 4,78
$\Delta PM = 1,26$	

Non applicabile	Axx
	Kxxxxxx
	PM = 5,52
$\Delta PM = 1,26$	

Non applicabile	Axx
	Jxxxxxx
	PM = 5,78
$\Delta PM = 1,26$	

XXX	Axx
QTxxxxx	QTxxxxx
PM = 4,89	PM = 6,15
$\Delta PM = 1,26$	

XXX	Axx
KTxxxxx	KTxxxxx
PM = 5,28	PM = 6,78
ΔPM = 1,5	

XXX	Axx
JTxxxxx	JTxxxxx
PM = 4,78	PM =5,89
$\Delta PM = 1,11$	

XXX	Axx
KQxxxxx	KQxxxxx
PM = 5,89	PM = 7
ΔPM = 1,11	

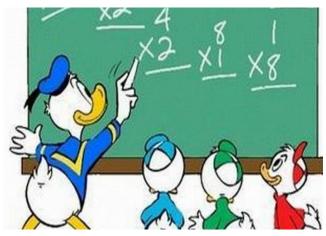
XXX	Axx
QJxxxxx	QJxxxxx
PM = 4,89	PM = 6,39
ΔPM = 1 , 5	

XXX	Axx	
KJxxxxx	KJxxxxx	
PM = 5,52	PM = 6.89	
$\Delta PM = 1,37$		

XXX	Axx	
KQTxxxx	KQTxxxx	
PM = 5,89	PM = 7	
ΔPM = 1,11		

XXX	Axx	
QJTxxxx	QJTxxxx	
PM = 5	PM = 6,5	
ΔPM = 1,5		

XXX	Axx	
KJTxxxx	KJTxxxx	
PM = 5,63	PM = 6,89	
ΔPM = 1,26		


XXX	Axx	
KQJxxxx	KQJxxxx	
PM = 6	PM = 7	
$\Delta PM = 1$		

XXX	Axx	
KQJTxxx	KQJTxxx	
PM = 6	PM = 7	
ΔPM = 1		

Appoggio settimo					
Sud	Casi	P ₁ %	ΔΡΜ	ΔPM Vp	
xxxxxx	1	•	-	-	
Txxxxxx	6	2,86	1,2600	0,036000	
Qxxxxxx	6	2,86	1,2600	0,036000	
Kxxxxxx	6	2,86	1,2600	0,036000	
Jxxxxxx	6	2,86	1,2600	0,036000	
QTxxxxx	15	7,14	1,2600	0,090000	
KTxxxxx	15	7,14	1,5000	0,107143	
JTxxxxx	15	7,14	1,1100	0,079286	0,7
KQxxxxx	15	7,14	1,1100	0,079286	0,,
QJxxxxx	15	7,14	1,5000	0,107143	
KJxxxxx	15	7,14	1,3700	0,097857	
KQTxxxx	20	9,52	1,1100	0,105714	
QJTxxxx	20	9,52	1,5000	0,142857	
KJTxxxx	20	9,52	1,2600	0,120000	
KQJxxxx	20	9,52	1,0000	0,095238	
KQJTxxx	15	7,14	1,0000	0,071429	
	210	100,0		1.239952	0,009

Nel caso dell'appoggio settimo non è configurabile il caso con 7 cartine perché le due di Nord non ne lasciano a sufficienza per Sud.

Per lo stesso motivo, tutti i casi di sei cartine in Sud non essendo configurabili nelle figure di raffronto, vengono assunti uguali al più vicino a loro.

N.B.: questa serie di articoli è stata realizzata con la preziosa collaborazione di Ermanno Veccia

Epitomando:

Carte di Nord	Vp
0	0,0084
1	0,0703
2	0,2347
3	0,3450
4	0,3375
5	0,3370
6	0,0500
7	0,0087
8-10	0
Totale	1,3915
	1,39

L'Asso terzo è quindi in grado di apportare alle carte della propria linea un *valore aggiunto* pari a circa una presa e ²/₅, rispetto a quando al suo posto ci sono tre cartine.

Se prendiamo come riferimento i valori in PO assegnati ai 4 onori principali dalla scala di MW, allora, il valore espresso in PM degli altri tre onori dovrebbe risultare all'incirca pari a:

Onore	РО	%	PM
Asso	4	1	1,39
Re	3	3/4	1,04
Dama	2	2/4	0,70
Fante	1	1/4	0,35

Ripetendo il procedimento appena eseguito per tutti e 4 gli onori figurati terzi scopriremo se e quanto i valori si discostano da quelli aspettati.

Se scostamento ci fosse, i valori dei quattro onori principali non sarebbero ben rapportati nella scala di MW rispetto alla loro capacità di far presa e, la stessa, dovrebbe la persistenza della sua popolarità non tanto ad un potente incantesimo del mago Merlino, quanto alla sostanziale pigrizia dei nostri amici bridgisti che prediligono la semplicità rispetto a qualunque altra cosa.

LICITA

Le Trial Bid

Le trial bid furono introdotte nel sistema

Romex da George Rosenkraz con il nome originario di "Help Suite Game Tries" con l'intento principale di indagare circa le possibilità di manche

quando il punteggio è scarso.

Per meglio rappresentare il concetto sotteso dalle *trial bid*, si inizi osservando le carte della linea seguente:

Con un normale sistema naturale a quinta nobile, Ovest inizia aprendo di 1 , e, quando il partner rialza l'apertura (appoggio debole), si può valutare di avere un'ottima mano, fatta di 15 PO e, soprattutto, di 3 Assi: un insieme che certamente vale un tentativo di arrivare manche.

Est non vi sostiene e la cosa finisce lì:

Ovest	Nord	Est	Sud
1 🛦	Р	2♠	Р
3♠			

Realizzato il parziale senza grossi problemi (si pagano 4 prese nei colori rossi) sarebbe lecito pensare che si è agito per il meglio.

Però, non è proprio così.

Infatti, se a parità di tutto il resto, si invertono i minori nella mano di Est:

La licita si svolgerebbe alla stessa identica maniera, ma, stavolta, non aver raggiunto la manche sarebbe un vero cruccio, perché, pur con soli 21 PO in

linea, le 10 prese a picche sono stese sul tavolo.

Non è tanto il complesso della forza espresso in PO il fattore più importante per guidare la scelta del traguardo finale perché, in verità, conoscere la dislocazione degli onori nei vari colori è molto più importante.

Le *trial bid* sono un modo per scoprire proprio dove si trovano gli onori del compagno.

Ne esistono di vario tipo.

Le *Long Trial Bid* (originariamente *Long Suite Game Tries*) ricercano la copertura onori nel secondo colore della mano dell'apertore e possono risolvere il problema appena incontrato:

Ovest	Nord	Est	Sud
1 ♠	Р	2♠	Р
3 •	Р	3/4♠	

Con le carte del primo diagramma Est ripiegherebbe a 3, perché non ha copertura onori nel seme di quadri; con le carte del secondo diagramma, Est rialzerebbe, invece, la manche.

All'esatto contrario, le Short Trial Bid (originariamente Short Suite Game Tries) presentano il singolo dell'apertore e consentono al rispondente di valutare se ci sono onori sprecati in quel colore, risolvendo un'altro tipo di problema.

Cambiando solo leggermente le carte della linea precedente si viene a creare un diagramma, nel quale di nuovo il massimo raggiungibile per la linea EO è un parziale a picche:

Però, se spostiamo il Re laterale di Est dalle cuori alle quadri, ecco che la manche diviene, ancora una volta, una passeggiata di salute:

Con le nuove carte degli ultimi due diagrammi la licita andrebbe così:

Ovest	Nord	Est	Sud
1 🛦	Р	2♠	Р
3♥	Р	3/4♠	

con Est che si accontenterebbe del parziale quando le sue carte fossero quelle con il Re di cuori, mentre, si involerebbe a manche se fossero quelle con il Re di quadri.

Come si è potuto intuire, il rispondente ad una *trial bid*, declina l'interesse per la manche riportando in atout al minimo livello e lo conferma saltando a manche.

Ma, in caso di risposta non negativa, il rispondente può fare di mealio producendosi in una contro trial bid (Opposite Trial Bid) con il fine di interrogare il controllo di un nuovo colore laterale che si ritiene focale per il raggiungimento di un obiettivo ambizioso:

Ovest	Nord	Est	Sud
1 ♠	Р	2♠	Р
3♦	Р	3♥	Р
3♠			

In questa sequenza, il 3 è una trial di lunga sulla quale Est avendo un doppio (una figura che non è né bene e né male) non sa bene quali pesci prendere.

Est si riserva, allora, di raggiungere la manche solo a condizione che Ovest sia corto a cuori, un colore dove, altrimenti, rischia di perdere una barca di prese.

Ovest, ovviamente, non ritiene di poter supportare la *contro trial* del partner e la coppia si ferma sotto manche.

Se, però, le cuori e le fiori venissero invertite nella mano dell'apertore, la manche risulterebbe un'ottima scommessa:

Ovest	Nord	Est	Sud
1 🛦	Р	2♠	Р
3♦	Р	3♥	Р
4 🛦			

Con le **Double Trial Bid** è possibile scegliere tra i due tipi di interrogazione stabilendo che una licita in nuovo colore dell'apertore è una *long trial bid*, mentre, un suo passaggio convenzionale per 2SA, prepara la presentazione di un singolo.

Sul 2SA convenzionale, il rispondente risponde fisso a gradino (3♣) così che l'apertore può esplicitare il suo singolo:

Ovest	Nord	Est	Sud
1 🛦	Р	2♠	Р
?			
2SA	Obbliga 3♣		
3♣	indaga le fiori		
3♦	indaga le quadri		
3♥	indaga le cuori		
3♠	invito generico		

Ovest	Nord	Est	Sud
1 🛦	Р	2♠	Р
2SA	Р	3♣	Р
3♦	singolo a quadri		
3♥	singolo a cuori		
3♠	singolo a fiori		

Dopo l'appoggio a cuori il relè preparatorio diviene 24, mentre, 2SA indaga le picche:

Ovest	Nord	Est	Sud
1♥	Р	2♥	Р
?			
2♠	obbliga 2SA		
2SA	indaga le picche		
3♣	indaga le fiori		
3♦	indaga le quadri		
3♥	invito generico		

Ovest	Nord	Est	Sud
1♥	Р	2♥	Р
2 🛦	Р	2SA	Р
3♣	singolo a fiori		
3♦	singolo a quadri		
3♥	singolo a picche		

Nel tempo sono stati elaborati altri sviluppi delle *trial bid* anche più complicati di quelli qui descritti, nondimeno, per conoscerne la filosofia di base quanto qui riportato è più che sufficiente.

STORIA DEL BRIDGE

Europei 1981

Praticamente tutti i principali tornei del mondo, e anche alcuni di quelli meno importanti, pubblicano un bollettino quotidiano che fornisce risultati, notizie e una selezione delle licite più interessanti.

Questo concetto è stato introdotto dal grande giocatore-scrittore olandese, Herman Filarski, durante gli Europei del 1955 ad Amsterdam.

Da allora, i bollettini dei campionati europei sono

stati invariabilmente di alta qualità e sono stati anche molto apprezzati dagli appassionati di ogni parte del mondo. I bollettini dei Campionati Europei 1981, in programma a Birmingham, in Inghilterra con inizio l'11 luglio, sono stati curati da Phillip Alder ed offerti per posta al costo di \$ 20.

Le squadre di casa l'hanno fatta da padrone conquistando l'argento in campo maschile e l'oro in campo femminile.

Campioni europei si sono laureati i polacchi con una squadra formata da Alexander Jezioro, Julian Klukowski, Krzysztof Martens, Tomasz Przybora, Marek Kudela e Andrzey Milde.

In campo femminile, il paese ospitante ha replicato la vittoria ottenuta nei precedenti campionati del Mercato Comune svoltisi nella stessa città di Birmingham.

A quei tempi, la squadra femminile britannica era fortissima ed aveva la sua stella nell'allora signorina Nicola Gardener, che figlia di un ex campione europeo,

era campionessa europea in carica lei stessa.

La squadra era capitanata da Derek

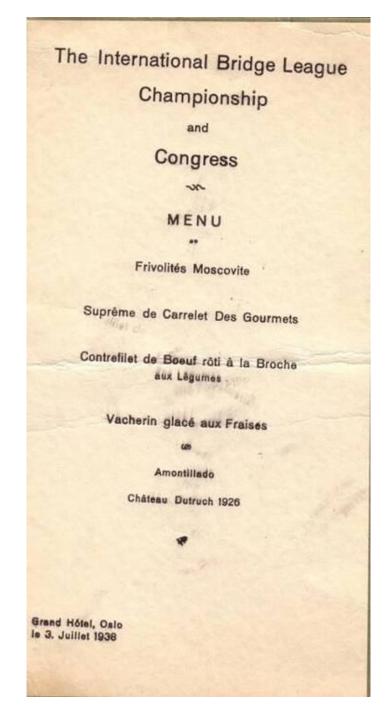
Rimington altre е le giocatrici erano: Pat Davies, Sandra Landy, Sallv Brock. Maurer Dennison е Diana Williams.

Tutti nomi che hanno fatto la storia del bridge femminile.

Seconda arrivò la Francia e terzo il nostro glorioso *Pink Team* composto da Luciana D'Andrea, Marisa D'Andrea, Andreina Morini, Serenella Falciai, Gianna Arrigoni ed Enrichetta Gut.

Europei 1938

La 7^a edizione dei Campionati Europei si svolse a Oslo con la partecipazione di 10 squadre in campo maschile e di un pari numero in campo femminile. Gli attori che a quel tempo andavano per la maggiore erano dell'Europa dell'Est e il Campionato fu appannaggio della fortissima squadra ungherese che allineava: Ede Zichy, Imre Bokor, Gyorgy Ferenczy, Lazlo Klor, Andor Por e Lajos Widder.



Sul podio salirono la Norvegia per l'argento e l'Olanda per il bronzo. Gli azzurri non erano presenti.

In campo femminile si trattava solo della 4ª edizione e si ebbe l'inattesa vittoria della squadra danese con Karen Kolle, Ebba Lundsteen, Anna Hillerup e Demly Wilming, che giocarono l'intero campionato in quattro!

Sul podio salirono la Svezia per l'argento e la Norvegia per il bronzo. Nemmeno le azzurre erano presenti.

L'unico documento "importante" in mio possesso di questo lontanissimo campionato, oltre alla foto sopra con i vincitori seduti dietro la Coppa, è quello raffigurato nella colonna qui accanto con cui si conclude questo numero della newsletter.

